Indian Statistical Institute Second Semester Examination 2003-2004 M.Math I Year Differential Geometry Date:03-05-04

Time: 3 hrs

Max. Marks : 50

[6]

Answer all six questions:

- Consider the two-dimensional Riemannian manifold (M, g) where M = {(x, y) ∈ ℝ² : y > 0} and g_(x,y) = ¹/_{y²} dx ⊗ dx + ¹/_{y²} dy ⊗ dy
 a) For any a ∈ ℝ, prove that the map f_a : M → M given by f_a(x, y) = (x + a, y) is an isometry.
 b) For any a ∈ ℝ, prove that the curve σ_a : ℝ → M given by σ(t) = (a, e^t) is a geodesic.
 c) Calculate the curvature of (M, g) at any point (x₀, y₀).
 [11]
- 2. Let M and N be *n*-manifolds with M compact and N converted. Let $f: M \to N$ be an immersion. Prove that f is onto (surjective). [6]
- Let (πM̃, S̃) ↓ (M, g) be a Riemannian Covering i.e., a smooth covering such that π is orientation preserving. If the covering is a finite K-sheeted covering prove that Vol (M̃, g̃) = K Vol (M, g). [8] <u>Hint</u>: Recall the proof when π is actually an isometry.
- 4. Let M and N be compact oriented n- manifolds. Let Ω be an orientation form for N and let $f, g : M \to N$ be two smooth maps. If f and g are smoothly, homotopic, (i.e. if there is a smooth map $F: M \times [0,1] \to N$ with F(x,0) = f(x) and F(x,1) = g(x) for all x). Then prove that $\int_{M} f^*(\Omega) = \int_{M} g^*(\Omega)$
- 5. Let (M,g) be a Riemannian manifold and "P" a point in M, Z, a submanifold of M. Let $C : [0, L] \to M$ be a geodesic such that $l(c) = \inf_{x \in A} d(P, x)$

a) Let C_t be a variation of C and Y be the corresponding variation vector field. We know that $\inf -\epsilon < t\epsilon l(C_t) = l(C)$ for all variations with $C_t(L) \in A$ and $C_t(0) = P$. For variations of this type, what are the restrictions on Y(t) and Y(0)?

b) The first variation formula for the length functional is

$$\left. \frac{d}{dt} l(C_t) \right|_{t=0} = \langle y(s), \ C'(s) \rangle \int_0^2 - \int_0^2 \langle y(s), \nabla_C, C' \rangle \, ds$$

prove that $C'(L) \in (T_{c(L)}A)^{\perp}$, clearly state any result you use

6. Let $f: (M,g) \to \mathbb{R}$ be a smooth function on a Riemannian manifold. The Hessian of f, at P is defined as follows: Let $X, y \in T_P M$ and let \tilde{X}, \tilde{Y} be vector fields extending X, y. Then

$$D^2 f|_p(X, y) := (\tilde{X}_P(\tilde{y}(t)) - (\nabla_{\tilde{X}} \tilde{y}, (f))$$

a) Prove that $D^2 f$ is a tensor. i.e. $D^2 f(X, y)$ doesn't depend on the extensions \tilde{X} and \tilde{y} .

b) Prove that $D^2 f$ is symmetric. c) If P is a local minimum of f, prove that $D^2 f|_p(X, X) \ge 0 \qquad \forall X \in T_P M.$

<u>Hint</u>: Consider a geodesic σ with $\sigma(0) = P$, $\sigma'(0) = X$. [11]